产品介绍
随着科技的发展和网络的普及,人们可获得的数据量越来越多,这些数据多数是以文本形式存在的。而这些文本数据大多是比较繁杂的,这就导致了数据量大但信息却比较匮乏的状况。如何从这些繁杂的文本数据中获得有用的信息越来越受到人们的关注。“在文本文档中发现有意义或有用的模式的过程"的文本挖掘技术为解决这一问题提供了一个有效的途径。
知识发现与数据挖掘是人工智能、机器学习和数据库相结合的产物。随着科学数据的大量积累和各种数据库的广泛使用,人们又逐步认识到海量数据的利用十分困难、效率低下,而且很难从中获得有价值的指导性意见。在这种情况下,数据挖掘技术应运而生。
文本挖掘作为数据挖掘的一个新主题 引起了人们的很大兴趣,同时它也是一个富于争议的研究方向。文本挖掘不但要处理大量的结构化和非结构化的文档数据,而且还要处理其中复杂的语义关系,因此,现有的数据挖掘技术无法直接应用于其上。对于非结构化问题,一条途径是发展全新的数据挖掘算法直接对非结构化数据进行挖掘,对于数据非常复杂,导致这种算法的复杂性很高;另一条途径就是将非结构化问题结构化,利用现有的数据挖掘技术进行挖掘,目前的文本挖掘一般采用该途径进行。对于语义关系,则需要集成计算语言学和自然语言处理等成果进行分析。
NLPIR大数据语义智能分析平台平台针对互联网内容处理的全技术链条的共享开发平台。15年专业研究与工程积累,提供应用软件及各平台下的二次开发包。提供了用于技术二次开发的基础工具集。开发平台由多个中间件组成,各个中间件API可以无缝地融合到客户的各类复杂应用系统之中。
NLPIR能够 多角度满足应用者对大数据文本的处理需求,包括大数据完整的技术链条:网络采集、正文提取、中英文分词、词性标注、实体抽取、词频统计、关键词提取、语义信息抽取、文本分类、情感分析、语义深度扩展、繁简编码转换、自动注音、文本聚类等。
中文数据挖掘技术应时代的要求应运而生,在很大程度上满足了人们对自然语言处理的需要,解决了人和计算机交流中的一些障碍;但中文数据挖掘技术也存在很多困难,NLPIR大数据语义智能技术将对中文数据挖掘技术进行深入研究,必将提供出高质量、多功能的中文数据挖掘算法并促进自然语言理解系统的广泛应用。